立即咨询有惊喜哦 !

logo
logo
简介
简介
联系方式
正脉科工有限元分析联系电话010-81387990
邮箱xyq@vipstq.com
 
 

单自由度系统的自由振动

作者:管理员    发布于:2014-12-22 02:09:37    文字:【】【】【

1、振动:是一种运动形态,是指物体在平衡位置附近作往复运动。

 振动属于动力学第二类问题---已知主动力求运动。

振动问题的共同特点:系统既有惯性又有弹性。

2  振动问题按自由度划分:

1)单自由度振动一个自由度系统的振动;

2)多自由度振动---两个或两个以上自由度系统的振动;

3)连续系统振动---连续弹性体的振动。这种系统具有无穷多个自由度。

3、自由振动:如果一个系统只在初始时受到外界扰动,此后并不受到其他力的作用而发生的振动,叫自由振动;

4、受迫振动:系统在作为时间函数的外部激励下发生的振动,这种外部激励不受系统运动的影响。

5、单自由度系统:弹簧-质量系统是最简单、最典型的单自由度振动系统。由于用一个坐标x就可以表示质量块在任意时刻的位置,因此,该系统被称为单自由度系统。

6、无阻尼平动系统的自由振动:根据牛顿第二运动定律建立系统的运动微分方程

-kx=m x’’,即mx’’+kx=0.

4、粘性阻尼平动系统的自由振动:mx’’+cx’+kx=0, 振幅随时间按指数规律减小

下一篇:实验模态分析
 
 
联系我们
 
 
 
图片
图片
多行文字
电话:010-81387990
手机:18301320667
联系人:李老师
网址:www.101315.com
邮箱:bjxu@vip.163.com
地址:北京市房山区良乡绿地启航国际商务办公区14号楼西楼5层
脚注信息
北京正脉科工科技有限公司  电话:010-81387990                            关注微信了解更多信息
版权所有 Copyright(C)2009-2013 京ICP备14038777号-1                                                                    
图片
图片